3.583 \(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=75 \[ \frac {2 a^2 \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d (a+b)}-\frac {2 a F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d} \]

[Out]

2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b/d-2*a*(cos(1/2*d*x+1
/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/d+2*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/
2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/b^2/(a+b)/d

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2804, 2639, 2803, 2641, 2805} \[ \frac {2 a^2 \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d (a+b)}-\frac {2 a F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)/(a + b*Cos[c + d*x]),x]

[Out]

(2*EllipticE[(c + d*x)/2, 2])/(b*d) - (2*a*EllipticF[(c + d*x)/2, 2])/(b^2*d) + (2*a^2*EllipticPi[(2*b)/(a + b
), (c + d*x)/2, 2])/(b^2*(a + b)*d)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2803

Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[d/b
, Int[1/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[(b*c - a*d)/b, Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e +
f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2804

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[b
/d, Int[Sqrt[a + b*Sin[e + f*x]], x], x] - Dist[(b*c - a*d)/d, Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x
]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx &=\frac {\int \sqrt {\cos (c+d x)} \, dx}{b}-\frac {a \int \frac {\sqrt {\cos (c+d x)}}{a+b \cos (c+d x)} \, dx}{b}\\ &=\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}-\frac {a \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{b^2}+\frac {a^2 \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b^2}\\ &=\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}-\frac {2 a F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 a^2 \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 (a+b) d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.30, size = 81, normalized size = 1.08 \[ -\frac {2 \sin (c+d x) \left (-(a+b) F\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+a \Pi \left (-\frac {b}{a};\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+b E\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right )}{b^2 d \sqrt {\sin ^2(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)/(a + b*Cos[c + d*x]),x]

[Out]

(-2*(b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] - (a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + a*Ellip
ticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(b^2*d*Sqrt[Sin[c + d*x]^2])

________________________________________________________________________________________

fricas [F]  time = 152.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{b \cos \left (d x + c\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

integral(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{b \cos \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 0.79, size = 227, normalized size = 3.03 \[ \frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-\EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b +\EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -\EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}-a^{2} \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )\right )}{b^{2} \left (a -b \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x)

[Out]

2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^
2+1)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2-EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+EllipticE(cos(
1/2*d*x+1/2*c),2^(1/2))*a*b-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-a^2*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(
a-b),2^(1/2)))/b^2/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*
x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{b \cos \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{a+b\,\cos \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x)),x)

[Out]

int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________